Як знайти висоту, якщо відома довжина і ширина. паралелепіпед довжина висота ширина.

В підставі багатьох геометричних фігур лежать прямокутники і квадрати. Найбільш поширений серед них паралелепіпед. Також до них відносяться куб, піраміда і усічена піраміда. Всі ці чотири фігури мають параметр, званий заввишки.
Інструкція
1
Накресліть найпростішу изометрическую фігуру, звану прямокутним параллелепипедом. Вона отримала свою назву з тієї причини, що її гранями є прямокутники. Підстава даного паралелепіпеда також є прямокутником, які мають ширину a і довжину b.
2
Обсяг прямокутного паралелепіпеда дорівнює добутку площі підстави на висоту : V = S * h. Оскільки в основі паралелепіпеда лежить прямокутник, площа цього підстави дорівнює S = a * b, де a - довжина, b - ширина . Звідси, обсяг дорівнює V = a * b * h, де h - висота (причому, h = c, де c - ребро паралелепіпеда). Якщо в задачі потрібно знайти висоту паралелепіпеда, перетворіть останню формулу таким чином: h = V/a * b.
3
Існують прямокутні паралелепіпеди, в підставах яких лежать квадрати. Всі його межі являють собою прямокутники, з яких квадратами є два. Це означає, що його обсяг дорівнює V = h * a ^ 2, де h - висота паралелепіпеда, a - довжина квадрата, рівна ширині. Відповідно, висоту даної фігури знайдіть наступним чином: h = V/a ^ 2.
4
У куба квадратами з однаковими параметрами є всі шість граней. Формула для обчислення його об'єму виглядає так: V = a ^ 3. Обчислювати будь-яку з його сторін, якщо відома інша, не потрібно, оскільки всі вони рівні між собою.
5
Всі перераховані вище способи припускають обчислення висоти через обсяг паралелепіпеда. Однак існує й інший спосіб, що дозволяє обчислити висоту при заданій ширині та довжині. Ним користуються в тому випадку, якщо в умові завдання замість обсягу приведена площа. Площа паралелепіпеда дорівнює S = 2 * a ^ 2 * b ^ 2 * c ^ 2. Звідси, c (висота паралелепіпеда) дорівнює с = sqrt (s/(2 * a ^ 2 * b ^ 2)).
6
Існують й інші завдання з обчислення висоти при заданих довжині і ширині. У деяких з них фігурують піраміди. Якщо в задачі дано кут при площині основи піраміди, а також її довжина і ширина , знайдіть висоту , використовуючи теорему Піфагора і властивості кутів.
7
Для того, щоб знайти висоту піраміди, спочатку визначте діагональ підстави. З креслення можна зробити висновок, що діагональ дорівнює d =? A ^ 2 + b ^ 2. Оскільки висота падає в центр підстави, половину діагоналі знайдіть наступним чином: d/2 =? A ^ 2 + b ^ 2/2. Висоту знайдіть, використовуючи властивості тангенса: tg? = H/? A ^ 2 + b ^ 2/2. Звідси випливає, що висота дорівнює h =? A ^ 2 + b ^ 2/2 * tg?.
Відео по темі
 http://www.youtube.com/watch?v=zxujGADh4zY